Speaker Recognition Usin

نویسنده

  • Ryan Rifkin
چکیده

Many of the problems arising in speech processing are characterized by extremely large training and testing sets, constraining the kinds of models and algorithms that lead to tractable implementations. In particular, we would like the amount of processing associated with each test frame to be sublinear (i.e., logarithmic) in the number of training points. In this paper, we consider smoothed kernel regression models at each test frame, using only those training frames that are close to the desired test frame. The problem is made tractable via the use of approximate nearest neighbors techniques. The resulting system is conceptually simple, easy to implement, and fast, with performance comparable to more sophisticated methods. Preliminary results on a NIST speaker recognition task are presented, demonstrating the feasibility of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Speech Recognition Usin Intra-speaker Ada

Inter-speaker variation can be coped rather well in speech recognition by speaker adaptation techniques such as MLLR and MAP. However, when dealing with speech other than reading style, such as conversational speech, emotional speech and so on, current recognition systems cannot achieve a satisfactory performance even after speaker adaptation. In view of this situation, two-level adaptation met...

متن کامل

Lost Speech Reconstruction Method usin Missing Feature Theory and HMM

In recent years, IP telephone service has spread rapidly. However, an unavoidable problem of IP telephone service is deterioration of speech due to packet loss, which often occurs on wireless networks. To overcome this problem, we propose a novel lost speech reconstruction method using speech recognition based on Missing Feature Theory and HMM-based speech synthesis. The proposed method uses li...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003